Large Sample Theory for Semiparametric Regression Models with Two-phase, Outcome Dependent Sampling By
نویسندگان
چکیده
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part agrees with the more general information bound calculations of Robins, Hsieh and Newey (1995). By verifying the conditions of Murphy and van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.
منابع مشابه
Large Sample Theory for Semiparametric Regression Models with Two-Phase, Outcome Dependent Sampling
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild ...
متن کاملWeighted Likelihood for Semiparametric Models and Two-phase Stratified Samples, with Application to Cox Regression
Weighted likelihood, in which one solves Horvitz-Thompson or inverse probability weighted (IPW) versions of the likelihood equations, offers a simple and robust method for fitting models to two phase stratified samples. We consider semiparametric models for which solution of infinite dimensional estimating equations leads to √ N consistent and asymptotically Gaussian estimators of both Euclidea...
متن کاملEstimating Multiple Treatment Effects Using Two-phase Regression Estimators
We propose a semiparametric two-phase regression estimator with a semiparametric generalized propensity score estimator for estimating average treatment effects in the presence of informative first-phase sampling. The proposed estimator can be easily extended to any number of treatments and does not rely on a prespecified form of the response or outcome functions. The proposed estimator is show...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملSemiparametric Inference for Data with a Continuous Outcome from a Two-Phase Probability Dependent Sampling Scheme.
Multi-phased designs and biased sampling designs are two of the well recognized approaches to enhance study efficiency. In this paper, we propose a new and cost-effective sampling design, the two-phase probability dependent sampling design (PDS), for studies with a continuous outcome. This design will enable investigators to make efficient use of resources by targeting more informative subjects...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000